High Gain Feedback and Telerobotic Tracking
D.E. Koditschek*

Yale University | (7 / T

New Haven, CT 06520-2157

Abstract

Asymptotically stable linear time invariant systems are capable of tracking arbitrary reference signals with a bounded error
proportional to the magnitude of the reference signal (and its derivatives). 1t is shown that a similar property holds for a general
claas of nonlinear dynamical systems which includes all robots. As in the linear case, the error bound may be made #arbitrarily?
small by increasing the magnitude of the feedback gains which stabilize the system.

1 Introduction
Tracking is the archetypal pursuit of the control theorist. Given a dynamical system,

2 = [f(z,u),
v = h(z)

and a specified “reference signai”, r(t), it is required to find a control, u°(t) such that the forced system, £ = f(z,u") “tracks” r
in some sense — usually limi_ y = r. Solutions to such problems generally involve pre-filtering the reference trajectory through
a suitable “feedforward” algorithm, and then adding a compensating error driven “feedback” term to arrive at the input, u*. If
the reference signal is known i priori, then the feedforward algorithm may entail pure differentiation to “pre-compensate” for
the lags introduced by the dynamical systemn itself. However, on-line differentiation of unknown and unpredictable signais has
long been eschewed by control theorists as an unreliabie technique for both theoretical as well as practical reasons.

This paper considers the problem of tracking in the context of telerobotic manipulators. It is shown that a general class
of highly nonlinear control systems which includes all robot models admits tracking algorithms based upon high gain linear
state variable feedback. The choice of a pure feedback based algotithm for tracking is surely not optimal in any sense of the
word. However, the only other techniques which are known to guarantee tracking for this class of systems make use of feedback
algorithms which attempt exact canceilation {1,2,3}, (or “nearly” exact cancellation, e.g. [4,5] ) of intrinsic nonlinear dynamical
terms via feedback, and pure differentiation of the reference trajectory in the feedforward path. In robot applications admitting
the use of a “high level” planner it is plausible that the entire future strategy might be made available at once to the “low
level” controller in which case tracking schemes requiring pure differentiation of the reference signal might be acceptable. In
telerobotic applications the reference signal is, by definition, & prioti unknown: it is generated as a record of the unpredicted
arbitrary motion of a human agent of control. Schemes which require pure differentiation will probably not be useful in this
context.

In a sense, the result reported here simply represents another example of the similarity hetween general mechanical systems
and second order linear systems, It is well known that asymptotically stable linear time invariant systemns are capable of tracking
arbitrary reference signals with a bounded error proportional to the magnitude of the reference signal (and its derivatives). For
e fixed bound on this magnitude, the asymptotic tracking error may be made “arbitrarily” small by increasing the magnitude of
the eigenvalues in the left half of the complex plane. In practice, this is accomplished by increasing the gain of linear feedback
compensators. In this paper it is shown that the analogous property holds true for the more generai class of nonlinear mechanical
systems.

As in the theory of linear servomechanisms, a practical obstacle to the systematic use of high gain feedback techniques in
telerobotic applications is the inevitable presence of actuator torque limitations. Practical tracking strategies which address this
problem while maintaining convergence guarantees are very much needed. This important consideration is =ntirely ignored here.
The problem of characterizing the transient response of feedback compensated nonlinexr mechanical systems is the topic of a
paper cur-ently in progress.
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2 Preliminary Discussion

2.1 Notation and Definitions

If / : R® — R™ has continuous first partial derivatives, denote ita m x n jacobian matrix as Df . When we require only a subset

of derivatives, ¢.g. when z = [ % ], and we desire the jacobian of / with respect to the variables z; € R™, as 13 is held fixed,
£ ]

we may write .
D..f £ Df [ o ]

If A:J— R"" is ssmooth map taking matrix values then let

a T
A) =sup sup |z Az
#(A) .e?mfxl |

sod A. .. T
v(A) = inf ol 1" Azl

If J is compact, or the entries of A are bounded then both v{A), p(A) are non-negative real numbef:. For any constant mft.nx,
#(A) is the square root of the eigenvalue of greatest magnitude, while ¥(A) is the square root of the eigenvalue of least magnitude

of AT A, from which it follows that i
' wA) = supllA@l 1/u(4) = sup 4”@,
e €

where || - || denotes the operator norm induced by the eulcidean norm of R.": . . .
Giv“en“l set P, a smooth scalar valued map, v: P — R is said to be posstive definite at a point p€ P if v(p) =0,and v >0

in some open neighborhood of p. Given a smooth (time invariant) vector field,/, on some phase, space, P, we shall say that, v,
a positive definite map at p¢ € P, constitutes a Lyapunov function for [ at py if the time derivative along any motion of the

vector field is non-positive,
v =D, f(p) 0,

in some neighborhood of py, and that it constitutes a strict Lyapunov function for f if the inequality is strict [6,7]. The domain
of v with respect to p, is the largest neighborhood around p which is free of additional criiical points and upon which the
derivative is still non-positive.

The existence of a strict Lyapunov function at a point is a sufficient condition for asymptotic stability of that equilibrium
state. If a strict Lyapunov function has not been found, asymptotic stability may, nevertheless, be assured if a further condition
on the possible limiting set holds. This is “LaSalle’s Invariance Principle” {7]. It is possible, as weli, to draw conclusions about
the tracking capability of a forced dynamical system in consequence of of the stability properties of the unforced vector field at
a particular equilibrium state. However, this seems to require the use of a strict Lyapunov function.

It has been known for quite some time that the total energy of a mechanical system may be interpreted as a Lyapunov
function [8]. Unfortunately, this choice of Lyapunov function is never strict. The central contribution of this paper rests upon
the construction of a strict Lyapunov function for the general class of nonlinear mechanical systems described below, (1). The
tracking results follow as a standard consequence.

2.2 Dynamical Equations of Kinematic Chains

The equations of motion of a kinematic chain have been extensively discussed in the robotics literature, and this paper will rely
upon the standard rigid body model of an open chain with revolute joints. Thus, we consider a robot to be a particular member
of the class of mechanical syatems,

MlqlG + B4, qlg + k(q) =+ )
where the generalized positions take values in a configuration space, ¢ € J, and M is a positive definite invertible symmetric
matrix for all ¢ € J. As shown in the appendix, in the case of kinematic chains, M, the “inertial” terms, B, the “coriolis and
centrifugal” terms, and k, the gravitational disturbance vector, all vary in ¢ by polynomials of transcendental functions. It
follows that v(M) > 0 and u(M) < oo.

This system may be rewritten in the form

als @)
Ga=M"Bg + k-1

where the generalized positions and velccities take values p 2 [ :; ] €PET/in phase space — the tangent bundle over J.
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While M,k are always bounded, the coriolis and centripetal forces are quadratic in the velocity — l.e. B is linear in ¢ —
and, therefore, may become unbounded. It is, however, bounded with respect to ¢, as the following technical result shows.

Lemma 1 For any k € R®,

k'Bgy = I M(K)es
where
.4 kD, M 1o
MEE| i |- DM
¥o, M| T
is bounded above.
Proof:
. l
Bu=ne) DM a-:[@e ) DM ] a
and, hence,

Bk =g [DM] (2 @ Nk - ig] (@2 © 1) D,M* &
T |
=q [DM*] (kef) - Je (. 3DTDME
k’D'nM
= ('I ' - }z‘-l “D'uM Q.
k’D'luM

Since M contains transcendental functions in g, all of its derivatives in ¢ must be bounded.
a

It follows that for some i < oo,
IM(E)| < Allkll. (3)

Corollary 3 For alip€ ?, |
q;liM - qu, =0.

Proof:
eJ[IM — Bles = eJ[IM M(e,)]r,
=1d [[DM'] (@) - (@8 )T DM | ¢
=0.
a

2.3 Stability Properties of “PD” Compensated Systems

Suppose we are presented with the mechanical system (2), and a desired point,
A | qe
P = [ 0 ] €P.

Choose two positive definite matrices, Ky, K3 > 0, and define the “PD” algorithm

r = k(q) - Kilge ~ q] - Kaq. (4)

In terms of the translated “error coordinate system”for P,
w274, (5)

the resulting closed loop system has the form
I
—M 1K, -M~'(B+K3) ()
£ Alggle.
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Proposition 8 For all % > 0,

o(e) = ;eti’(q)e 2 ;J [ %g{'

0
TM(q) ] ¢
is a Lyapunov function for the closed loop system (6).

Proof: It is clear that ¥ is positive definite at the origin of the error system. Taking the time derivatives along the
solutions of the closed loop system, (6),

b =1e’PA+ AT + Ple

0 0 .
= —ef [ 0 ok ] e +‘7o¢;“M - Bles.

Noting that ¢; = ¢, it follows from Corollary 2, that the second term is identically zero.
0 .

There follows the desirable result that proportional and derivative linear state feedback stabilizes a mechanical system, after
the gravitational disturbance torques have been removed.

Theorem 1 ( (9,10,11] ) The origin of the ¢losed loop error coordinate system (6) is asymptotically stable.

Proof: The existence of a Lyapunov Function, ¥, assures stability. According to LaSalle’s invariance principle, the
attracting set is the largest invariant set contained in {(e1,¢3) € P : ¢ = 0}, which, evidently, is the origin, since the vector
field is oriented away from {e; = 0} everywhere else on that hyperplane.

0

Notice that the proof of attractivity requires an appeal to LaSalle’s invariance principle in consequence of the fact that ¢
is not a strict Lyapunov function. In order to obtain the desired extension to tracking problems it is necessary to construct
one. Unfortunately, the constructions devised to date require the artificial limitation to decoupled PD feedback. Namely, in the
sequel, it will be assumed that the gain matrices of (6) are specified as

K 2u' Ky & 201 ™

given two positive real numbers, w,¢.

2.4 A Strict Lyapunov Function for Nonlinear Mechanical Systems
The following technical lemma will be of use in the main result, below.

Lemma 4 For M(q) as sn (1) and any positive scalars, a,f,7 € R*,

1[5y

BI ~1M(q)
where
kele B 4
[ﬂ (M)
In particular, the matriz is positive definite when
ayw(M) > g (8)

Proof: Since
[al 31 J [al 81

I +M(q) BI (M) ] =Kel

it will suffice to show that
v(K ® I) = v(K).

This fol'lows since all eigenvalues of K ® I are eigenvalues of X, according to Lemma 12 in the appendix. The particular
conclusion obtains by taking the determinant of K.

a

Proposition 5 For all py € P and w,¢ > 0, given any bounded set, B C P, containing py there exists a scalar 45 > 0 such that

aly _ e[ whel  wel
o(e) £ 1Pl = 1 [ Top el e

s a .stn’ct- Lyapunov Function for the closed loop system, (6) on the domain 3, assuming the decoupled [eedback gain matrices
specified in (7).
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Proof: Letting
B & suplle|l,
2]

find some 7o satisfying

¢ _1_ uMs
Yo > max ’ ’ +1;. )
" {,/u(u) VM) V(M) ©)
According to Lemma 4 and the inequality involving the first entry of the inferior set in (9), it follows that P is a positive
definite matrix for all g € J, hence v, is positive defnite at pq.
Taking time derivatives along the solutions of system (6), we have

v =1e"[PA+ ATP + Ple,
which may be expanded as

wM=Y  pl
—we(vo — 1)efes —weef M~ Be,

. ,[u’M“ wM"]
v = —we )

+‘1o¢;[§1"l - Blh.
The term in the last line vanishes according to Corollary 2. Moreover, the block matrix in the first line is positive definite
according to the inequality (9) and the result of Lemma 4 since

WM™ WMt Mt o J[wr wI |[MY o
[wM" ! ]=[ 0 M'il[wl oM [ 0 M'i]'
Finally, according to Lemma 1, the term in the middle may be rewritten as
w§[(o — 1)efes + eIM ! Bes) = weel[(vo ~ 1)1 + M(Mes)jes > 0,
where k £ M~1e¢,, and the result follows from the inequality involving the last entry of the set in (9). )

0

3 Consequences for Tracking Unknown Reference Signals
Now consider the decoupled “PD" compensated system forced by a continuously diffarentiable reference signal, ¢4(t),
r = k(g) — w'lgu(t) - q] = 2wd- (10)

Assume that the reference trajectory is “unpredictable® — i.e. its first and second derivatives are unknown — but there is
available an A priori bound on the maximum rate of change,

ll4all < 0.

Notice that the forced closed loop system may be written in the same error coordinates as (5), above,
é = Alg,qle + d, (1)
where d 2 [ "é" ], is a “disturbance” input due to the unknown but non-zero reference derivative.

Theorem 2 The closed loop “disturbed” error system (11) has bounded trajectories which asymptotically approach the set

{c €P:llel < %-((—1;:—))2%\/(70/5)2 + :/w‘}

where
c k[ |

Proof: We have .
v =1e'[PA+ AP + Ple+ ¢'Pd,

- u{M} e;q} / W

< - soisllell [lell(K) = 200m(M)y/(ro/5) + 1/w?] .

This is negative whenever ¢ is outside the set indicated in the statement of the theorem.
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Corollary 8 Th¢ asymptotic tracking bound may be made arbitrarily small by increasing the magnitudes of the feedback gains
in (10)

Proof: For a sufficiently large value of w it is possible to choose two real numbers x,,x3 € (0,1) such that

s=royv(M) =KW

and the inequality (9) still holds. Usiag these definitions and the results of the theorem, the attracting region is bounded

by the magnitude
%—))-Zpo\/(ni/v(M)) +1/w?,

Note that
V(K) =w+v(M)/w - /(w~1ov(M)[w)? +4
=w+ k(M) = \f(w — (M) + 4,
hence,

G|
duw ' \/(w—nlu(M))'+4>o

and ¥(K) is bounded from below as w increases. Since k3 may be made as small as desired without violating (9), the result
follows.

a

A The Stack Representation

If A € R™™™, the “stack” representation of A € R™™ formed by stacking each column below the previoua will be denoted A®
(12].
If B € R*™* and A is as above then the kronecker product of A and B is

d"B wee al.,.B

d"B aee d;,.‘B

A®B2 € R™*™,

auB ... anmB

The kronecker product is not, in general, commutative. Note that while the transpose “distributes™ over kronecker products,
(A®B)" = (AT@ B"),
the stack operator, in general, does not.
Lemma 7 If A€ R™™™ then there ezists a nonsingular linear transformation of R™™, T, such that
(A’)s =TA®
Proof: Forp=nm,let 3 & {b1,...,5,} cenote the canonical basis of R* — i.e., & is a column of p entries with a sirgle

- entry, 1, in position i, and the other » — 1 entries set equal to zero. The transpose operator is a reordering of the canonical
basis elements, hence may be represented by the elementary matrix,

T 2 [b1,busts Bans1s s Dm-tinsts B3 Bne2s Brnes s Bimotime s By Bamy Boms ovs o -
a

For n = m, if we define P, £+ T, P £ ] - T then both operators are projections onto the set of “skew-symmetric” ,
“symmetric” operators of R", repsectively, since P} = P,. Note that Ker P, = Im P;.
The kronecker product does “distribute” over ordinary matrix multiplication in the appropriate fashion.
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Lemma 8 lf A€ R, Bc R, C € R DeR™ than
"(A® B)(C @ D) = (AC @ BD).
Lemma 9 ([13] ) If B € R™*, A € R**™, and C € R*** then
[ABC)® = (C" ® A)B*,
Noting that for any column, ¢ € R**!, we have
= [(c)’]. -,
there follows the corollary
Corollary 10 I[f Be R™"?, ¢ € R® (hen
Be =Bl = (@ 1)B
, = (1Be")" = (c'87)" = (1@ (87)".
Noting, moreover, that
tr {A} = (1%)" A",
there follows the additional result

Corollary 11 If A € R, B € R**™ then .
tr {487} = (4*) B".

Proof:
tr {AB") =(1') (a57)"
= (1) (Bo A
= (A') (B’®l)l'
- (W'

Lemma 12 For any square array, A € R"", if [,, is the identity on R™ then the spectrum of (A @ In) 1a contained in the
spectrum of A.

Proof: Suppose A is an eigenvalue of (A @ /). There muat be some non-zero vector, z € R™ in the kernel of
MIn®1.) — (A® ) Since £ = X® € R™™, it follows that

0 =(A\ln® 1)~ (A® D)z
= [ax - xa7
=[x, - am)".

This implies that Im XT C Ker Al, — A, and since the former subspace has dimension at least 1 (according to the
assumption that X # 0), the latter must as well. Thus, A is an eigenvalue of A.

a
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B General Robot Arm Dynamics

The rigid body model of robot arm dynamics may be most quickly derived by appeal to the lagrangian formulation of Newton's
Equations. If a scalar function, termed a lagrangian, A = x — v, is defined as the diflerence between total kinetic energy, «, and
total potential energy, v, in a system, then the equations of motion obtain from

SDA =D =1,
where r is & vector of external torques and forces [13,14].
Firat consider the kinetic energy contributed by a small volume of mass §m; at position p in link £,
1,.
bri = 5‘?«’ %p16m,

where %p; = %F; ‘p is the matrix representation of the position p in the base frame of reference,°F; is the matrix representation of
the frame of reference of link £; in the base frame, and ‘p is the matrix representation of the point in the link frame of reference,
and, hence, ! . :

. h=F ‘P'
since the position in the body is independent of the generalized coordinates. The total kinetic energy contributed by this link
may now be written

& = [ 3[R 4,,]';;‘,4,,.,.
= Je, L trace{Fi'p £ 9] Ydmi,
= }tracc{i".- f;d p'pTdm; [ﬂ]T}
= Ltrace (F;FFT},
(since the frame matrix is constant over the integration), where P; is a symmetric matrix of dynamical parameters for the link.
Explicitly, if the link has mass, /i, center of gravity (in the local link coordinate system) 7;, and inertia matrix, J;, then

r.g[T‘W
R N L

Passing to the stack representation (refer to Appendix A)
2¢; = trace {F;PFT}
= [(LRy] &2
=[Fonti £
- 5 A2
a7 2 .
= [(D,F#)4] BAD,F?)d
= §"Mi4,
where we have implicitly defined
T - e
M) 2 [D,F'| PDFY; RLF el
It follows that the total kinctic energy of the entire chain is given as
1, . -
c=2d'M@i M) £ T Mia).
=1
The potential energy contributed by ém; in £, is
5!}.‘ = z;F. ‘pg&mi
where g is the acceleration of gravity, hence the potential energy contributed by the entire link is
v = zgl"./A 'pgdm; = 2z Fipig,
and v = T, I Fig. ?
To proceed with the computation, ncte that DjA = Dix = d*M(q). hence,

d . .
zDi* = §i™M(q) +4d™M(q).

! We will omit the prior superscript, 0, when it is clear the the coordinate system of reference is the base

2Assume that zp *points up® in a direction opposing the gravitational field.
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Moreover,
D,x = 14"D,[M(g)d]
= ’47[61’ ® IID'M' '
hence,if all terms from Lagrange's equation involving the generalised velocity are collected, we may express them in the form
§TB?, where .
B(a.i)" £ M(g) - 3ld" @ |DM".

Finally, by defining k(q) 2 (Dgv ¥, Lagrange’s equation may be written in the form (1)

M(q)d + B(a,d)i + k(g) = 7.

M, called the “inertia® matrix, may be shown to be positive definite over the entire workspace as well as bounded from above since
it contains only polynomials involving transcendental functions of g. B contains terms arising from “coriolis” and “centripetal®
forces, hence is linear in ¢ (these forces are quadratic in the generalised velocities), and bounded in ¢, since it involves only
polynomials of transcendental functions in the generalised position. Finally, k arises from gravitational forces, is bouaded, and
may be observed to have much simpler structure (still polynomial in transcendental terms involving ¢) than the other expressions.
An important study of the form of these terms was conducted by Bejeay (13)].
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